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Abstract
An overview of the related topics of anomalous coarsening and glassy dynamics
is given. In anomalous coarsening, the typical domain size of an ordered phase
grows more slowly with time than the power law dependence that is usually
observed, for example, in magnetic systems. We discuss how anomalous
coarsening may arise through domain-size-dependent energy barriers in the
coarsening process. We also review the phenomenology of glassy dynamics and
discuss how simple nonequilibrium models may be used to reproduce certain
aspects of the phenomenology. In particular, models involving dynamical
constraints that give rise to anomalous coarsening are considered. Two models,
the asymmetric constrained Ising chain and the ABC model, are discussed in
detail with emphasis on how the large energy barriers to coarsening arise through
the local dynamical constraints. Finally, the relevance of models exhibiting
anomalous coarsening to glassy systems is discussed in a wider context.

1. Introduction

In this paper I shall review some very simple dynamical models whose dynamics slow down
with time. Along with this, some typical length scale in the system grows. These two features
are referred to as ‘glassy dynamics’ and ‘coarsening’ respectively. Anomalous coarsening
refers to the situation where a length scale grows more slowly with time than the usual power law
dependence. In this introduction I shall briefly review these topics and their interconnections.
Then in the later sections I shall describe in detail two models that exhibit anomalous coarsening
and glassy dynamics. The appealing feature of the models to be discussed is that although they
exhibit nontrivial behaviour they are simple enough to analyse and gain a firm understanding
of. In sections 2, 3 I shall summarize these analyses. Although the choice of models to be
reviewed reflects personal research interests, I believe that the two models studied in sections 2
and 3 are each representative of a class of systems. To bring this out I try to make connections
to other related models in sections 2.5 and 3.8. Finally, in section 4, I return to the relation
between glassy dynamics and coarsening.
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1.1. Glassy dynamics

The phenomenolgy of glassy systems is well established—see [1] for excellent reviews.
Experimentally, the archetypal system is a liquid that, when cooled rapidly to temperatures
where the equilibrium state should be a crystalline solid, becomes trapped in metastable liquid-
like configurations. Thus the higher-temperature configurations are frozen in and one can
meaningfully say that the glass is like a frozen liquid1.

Three distinguishing features of the glassy state are the long relaxation times, stretched
exponential decay of correlation functions (see equation (3) below) and ageing phenomena [2]
whereby since the system is out of thermal equilibrium it evolves continuously as time goes
by and time-translational invariance is lacking. This phenomenology provides a mandate for
theoretical study.

The long relaxation times that show a non-Arrhenius divergence as the temperature T is
lowered are often fitted experimentally by the Vogel–Tammann–Fulcher (VTF) law

τ = τ0 exp[−B/(T − T0)]. (1)

The relaxation time τ may characterize, for example, the time for an externally imposed stress
to relax. Although some heuristic justifications have been offered [3], for practical purposes
VTF is just a fit with three parameters τ0, B, T0. With T0 = 0 it reduces to an Arrhenius law. A
system for whichT0 is small, so that one has something close to Arrhenius behaviour, is referred
to as a ‘strong glass’, whereas a system exhibiting large deviations from Arrhenius behaviour is
referred to as a ‘fragile glass’. Generally, T0 is much lower than the experimental temperatures
so although there is a singularity in the fit, it is not physically relevant. Nevertheless it should be
noted that there has been a long debate concerning whether T0 represents a true thermodynamic
transition temperature achievable in the limit of infinitely slow cooling.

On the other hand, other alternative functional forms for relaxation times τ(T ) have been
proposed that do not exhibit singularities at any finite T . Among these, the exponential inverse
temperature squared (EITS) form

τ ∼ exp(const/T 2) (2)

(where the constant is positive) is popular. Experimentally, it is difficult to distinguish between
VF and EITS behaviour due to obvious limitations on the longest accessible timescales; both
can represent the experimentally observed τ(T ) in many materials [4].

Stretched exponential decay of correlation functions, let us say an autocorrelation q(t), is
expressed by the Kohlrausch–Williams–Watt law

q(t) ∼ exp[−(t/τ )θ ] (3)

where the stretching exponent θ < 1. A heuristic explanation for this law is to postulate a
broad distribution (τ) of relaxation modes with decay constants τ , yielding

q(t) =
∫

dτ (τ) exp(−t/τ ). (4)

If one assumes(τ) ∼ exp(−aτγ ) then for large t a poor man’s saddle point argument implies
that the dominant modes have τ = (t/aγ )1/(γ+1), which leads to (3) with θ = γ /(1 + γ ).
However the question remains as to how the broad distribution of modes (τ) comes about.

1 Strictly one may distinguish between a supercooled liquid and a glass according to the rate of the cooling schedule
but this issue is not pertinent here.



Anomalous coarsening and glassy dynamics 1399

1.2. Kinetically constrained models

One idea that was proposed to generate a broad distribution of relaxation times was of a
hierarchy of degrees of freedom [5]. The different levels in the hierarchy then relax in series,
the degrees of freedom in one level having to wait for the degrees of freedom in the level above
to reach some configuration before they are free to evolve. This latter condition is a realization
of a dynamical constraint.

A more concrete realization of a dynamical constraint in a system with just one set of
degrees of freedom is the n-spin facilitated kinetic Ising models introduced by Fredrickson
and Anderson [6–8]. That model comprises noninteracting Ising spins in a downwards pointing
field. However a spin can only flip if at least n nearest-neighbour spins are pointing up (against
the field). This gives rise to slow cooperative relaxation. A modification of this model is to
have anisotropic dynamical constraints [9–14]. In the one-dimensional version which we
shall refer to as the asymmetric constrained Ising chain (ACIC) a spin can flip down only if
its left neighbour is pointing up. As we shall show in section 2, although the equilibrium
distribution is the Boltzmann distribution, the relaxation to equilibrium is strongly affected by
the asymmetric constraint. Thus when quenching from high temperature to low temperature
the equilibrium distribution implies that most spins should be pointing down. However for a
spin to flip down its neighbour has to point up. Thus there is an energy barrier for isolated
up-spins to flip down that is related to the size of the domains of down-spins separating these
up-spins (this will be quantified in section 2). As the system gets closer to equilibrium these
domains become longer and the energy barriers increase. Thus the dynamic slows down.

Dynamical constraints can also induce ‘entropy barriers’. In this case there are no energy
barriers to relaxation, rather one can imagine special configurations or small doors in the phase
space that the system must pass through to allow it to relax. These doors are found through
random exploration of the phase space. However, as the relaxation proceeds the doors become
progressively fewer and harder to find. One example of such a system is the Backgammon
model [15].

Finally one should contrast the idea of energy (or free energy) barriers induced by
dynamical constraints with energy barriers induced by disorder. It is well known that in a
disordered system, where there is competition between different quenched random interactions,
one can have large energy barriers in the phase space. It has been argued that such quenched
disorder can mimic glassy systems (which are generally nondisordered). The theoretical
machinery developed in the study of disordered systems then allows one to proceed in
calculations [16]. However, one still has to come up with arguments that relate the quenched
disorder to some dynamically ‘self-induced disorder’ [17, 18]. Alternatively one can go one
step further and simply make assumptions about the phase space, such as a valley structure,
without specifying how such features arise as a result of the microscopic model. This forms
the basis of the ‘trap model’ [19, 20]. In that scenario one has a distribution of trap depths in
the phase space. With increasing time the system will explore deeper and deeper traps and
remain in them for longer and longer.

1.3. Coarsening

We now turn to the idea of coarsening and make comparisons with the glassy dynamics
discussed so far. To visualize a coarsening system think of quenching a system from a high-
temperature phase where its order parameter is zero to a low-temperature where the order
parameter can take some number of nonzero values (each different value corresponding to a
different ordered phase). Domains of the ordered phase(s) emerge and grow in time and it is
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this phenomenon that is referred to as coarsening. At late times the system enters a scaling
regime, that is a regime characterized by a single length scale (the typical size of domains)
�(t) that grows as �(t) ∼ tn. In this late-time scaling regime the distribution of domains,
once scaled by �(t), is statistically invariant. Thus the typical domain size indicates the age
of the coarsening system. The value of the exponent n depends on the symmetry of the order
parameter and conservation laws of the system. For a review see [22].

As a concrete example consider the zero-temperature Ising model with Glauber spin-flip
dynamics (nonconserved order parameter). Domains of up-spins and down-spins are separated
by domain walls that perform random walks: a step of the walk corresponds to the event that
one of the spins adjacent to the domain wall flips. When two domain walls meet they annihilate
and a domain is eliminated. Straight away one can argue roughly that, since the domain wall
motion is diffusive, the time typically required to eliminate domains of size l is T (l) ∼ l2.
Thus the typical domain size after time t is � ∼ t1/2.

More precisely one can write the growth law as a differential equation by noting that the
rate of change of the typical domain size should be proportional to the inverse of the mean
time to eliminate a domain multiplied by the size of the domain being eliminated

∂�

∂t
∝ �

T (�)
= 1

�
(5)

and one recovers � ∼ t1/2. This growth exponent actually holds for a nonconserved scalar
order parameter in two dimensions and above [22].

Now consider generalizing (5) to the case where some energy barrier�E (or more strictly
free energy barrier) is involved in the elimination of the domains and the system is at low but
finite temperature:

∂�

∂t
∝ e−�E/T

�
. (6)

Actually this precludes one-dimensional systems that only order up to a finite length scale at
finite temperature (see section 3), but at very low T one can consider the ordering process up
to that finite length. Some possible scenarios resulting from (6) have been categorized in [21].
If the barriers �E are independent of � one recovers � ∼ t1/2 growth. If the barriers are
proportional to �m one obtains � ∼ [ln t]1/m; in particular m = 1 yields logarithmic growth.
In section 2 it will be shown that for the ACIC discussed in section 1.2 the energy barriers are
logarithmic in � thus yielding from (6) a growth law where the growth exponent is proportional
to the temperature as T → 0. In section 3 models will be discussed that have energy barriers
that are linear in � thus yielding domain growth that is logarithmic in time. For a particular
model, the ABC model [23], it will be shown how these linear energy barriers arise. We refer
to such cases where something different from power law growth with temperature-independent
exponent is exhibited as anomalous coarsening.

A common approach in the study of coarsening is to make an approximation of a mean-
field nature. That is, one focuses on the probability distribution of the domain sizes and
ignores spatial correlations between domains. Such an approach is variously referred to as an
interparticle distribution function [24], an independent interval approximation [25] or a ‘bag
model’ [26]. To visualize this one thinks of placing all the domains in a bag, i.e. forgetting how
domains are arranged with respect to one another. Then the dynamics become the updating
of the domains in the bag. At each update a domain is selected from the bag along with
temporary neighbours. An update rule is implemented that depends on the shape/size of the
domain and its neighbours. After the update the domains are all replaced in the bag. For
example, in models where domain walls diffuse and annihilate or coalesce, such as the kinetic
Ising model discussed above, the update rule is to lengthen and shorten domains according to
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how the domain wall moves. In another class of models [26, 27], domains are eliminated at
each update with probabilities depending on their size; then the length of an eliminated domain
is distributed amongst the neighbours.

1.4. Nonequilibrium steady states

So far, although we have discussed glassy systems out of thermal equilibrium, the dynamics
have implicitly been assumed to obey detailed balance in the equilibrium state. Detailed
balance means that in the steady state there is no net flow of probability between any two
configurations. However one can consider a much larger class of nonequilibrium systems that
are defined solely by their dynamics, without reference to any energy function. Although
these systems may relax to some steady state it need not be a steady state described by Gibbs–
Boltzmann statistical mechanics. In general there will be a net flow of probability between
pairs of configurations, leading to probability current loops in the configuration space.

Examples of nonequilibrium steady states are given by driven systems with open
boundaries where a mass current is driven through the system. Thus the system is driven
by its environment rather being in thermal equilibrium with its environment. In such a driven
steady state generic long-range correlations may be exhibited [28]. This is in contrast to an
equilibrium state which only exhibits long-range correlations at nongeneric points i.e. phase
transitions. Since there is no energy function and Gibbs–Boltzmann statistical mechanics does
not apply, there is no general formulation within which to solve for such a driven steady state.
However it has often been suggested that the generic long-range correlations may result from
some effective long-range Hamiltonian that could describe the dynamics.

Of particular interest have been one-dimensional nonequilibrium systems. For models
respecting detailed balance it is well known that no phase transition or ordering process that
continues indefinitely can occur. However for nonequilibrium systems this is not the case [29].
Thus nonequilibrium systems afford new possibilities for coarsening processes even in one-
dimensional systems [30]. Moreover there are a number of exactly solvable one-dimensional
nonequilibrium systems [31]. In section 3 the steady state of the ABC model will be solved
for some special cases and it will be shown how strong phase separation along with anomalous
coarsening can occur in one-dimensional systems.

2. Asymmetric constrained Ising chain

In this section I discuss the model introduced by Jäckle and Eisinger [9, 10]. As discussed
in section 1.2 it was originally introduced as a model of cooperative, glassy relaxation. In
particular the directed nature of the dynamical constraint implies a hierarchy in the spin
relaxation. As I shall now describe the directed nature of the constraint also makes the model
amenable to analysis.

2.1. Model definition

The model comprises L Ising spins si = 0, 1 on a one-dimensional lattice with periodic
boundary conditions (site i = L + 1 is identified with site i = 1). The dynamics are defined
by the following spin-flip rates:

1 1→ 1 0 with rate 1

1 0→ 1 1 with rate ε
(7)
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where

ε = exp(−1/T ). (8)

Thus a spin can only flip if its left neighbour is pointing up (note that in [9] the mirror image
of the above definition was used, so that the right neighbour had to point up for a spin to
be able to flip). By a rate, say x, we mean that in a small time dt the event happens with
probability x dt . It is easy to check that the dynamics obey detailed balance with respect to an
energy function E = ∑L

i=1 si , i.e. the equilibrium distribution corresponds to free spins in a
downwards pointing field:

Peq({si}) = 1

Z
exp

[
−

∑
i si

T

]
= ε

∑
i si

(1 + ε)L
. (9)

It follows that the equilibrium concentration of up-spins, c = 〈si〉, is given by

c = ε

1 + ε
. (10)

Although (9) would hold for a number of different dynamics obeying detailed balance, other
properties such as two-time correlation functions may be sensitive to the particular choice of
dynamics.

It is clear that the asymmetric dynamical constraint implies that information propagates
to the right only. Thus in a thermodynamic limit where information cannot propagate all the
way around the ring back to the starting point, we must have 〈si+k(0)si(t)〉eq − c2 = 0 for
k > 0. However, the fact that detailed balance holds implies that in the steady state we must
have reversibility. To see this note that when one has detailed balance there is no net flow
of probability between any two configurations. Since there is no flow of probability there is
nothing to distinguish the forwards direction in time from the backwards direction. Therefore
running the systems backwards in time will not change any two-time correlation functions and

〈si+k(0)si(t)〉eq = 〈si+k(t)si(0)〉eq. (11)

Since we have argued that for k > 0 the left-hand side of (11) is equal to c2 we deduce that
the connected correlation function must be site diagonal:

〈si(0)sj (t)〉eq − c2 ∝ δij . (12)

This result is particular to the fully asymmetrically constrained model.
We shall be interested mainly in the behaviour after a quench from equilibrium at some

high initial temperature T 
 1 to low temperature T � 1 (ε → 0). At low temperatures
the equilibrium concentration of up-spins (10) is small. Thus the quench is followed by a
process of elimination of up-spins. However to eliminate an up-spin one first has to generate
an adjacent up-spin. This implies energy barriers in the system’s evolution. In figure 1 the
sequence of events after such a quench is illustrated schematically.

The basic objects that we use for the description of the system are domains. As shown by
the vertical lines in

. . . 1|0001|1|1|01|001|1|1|01|0 . . .
a domain consists of an up-spin and all the down-spins that separate it from the nearest up-spin
to the left. The length d of a domain then gives the distance between the up-spin at its right
edge and the nearest up-spin to the left. Note that adjacent up-spins are counted as separate
domains of length d = 1. In equilibrium, the distribution of domain lengths and its average
are

Peq(d) = ε/(1 + ε)d deq = 1 + 1/ε. (13)



Anomalous coarsening and glassy dynamics 1403

T � 1 0 1 1 0 1 0 1 1 1 0 0 1 1

⇓
T � 1 0 1 0 0 1 0 1 0 0 0 0 1 0

⇓
c → ε/(1 + ε) 0 1 0 0 0 0 0 0 0 0 0 1 0

Figure 1. Schematic representation of the evolution of the system following a deep quench. Before
the quench T 
 1 and c, the concentration of up-spins, 1/2. After the quench all the ‘mobile’
up-spins (i.e. those adjacent to other up-spins) are eliminated first. A slow coarsening process
ensues that reduces the density of up-spins c to its equilibrium value.

Now consider what happens after a deep quench to T � 1, ε � 1. The equilibrium
concentration of up-spins at the final temperature T is c = 1/deq = ε + O(ε2); hence the
equilibrium probability of finding an up-spin within a chain segment of finite length d is
O(dε) and tends to zero for ε → 0. In this limit (ε → 0 at fixed d), the flipping down of
up-spins therefore becomes irreversible to leading order. In terms of domains, this means that
the coarsening dynamics of the system is one of coalescence of domains: an up-spin that flips
down merges two neighbouring domains into one large domain.

Such coarsening processes have been studied in a variety of contexts. In particular
irreversible coarsening processes in which the rate of elimination depends solely on the domain
size have a very convenient property: during such a process, no correlations between the lengths
of neighbouring domains can build up if there are none in the initial state [27]. For the present
model the equilibrated initial state consists of domains independently distributed according
to (13) and is indeed uncorrelated. We take advantage of this property in section 2.3 to obtain
an exact solution of the coarsening dynamics. We first discuss in detail how energy barriers
arise in the dynamics.

2.2. Energy barriers

First we estimate the typical rate $(d) at which domains of length d disappear by coalescing
with their right neighbours. Because domain coalescence corresponds to the flipping down
of up-spins, $(d) can also be defined as follows. Consider an open spin chain of length d,
with a ‘clamped’ up-spin (s0 = 1) added on the left. Starting from the state (s0, s1, . . . , sd) =
10 . . . 01, $−1(d) is the typical time needed to reach the empty state 10 . . . 00 where spin sd
has ‘relaxed’ i.e. has flipped down. Any instance of this relaxation process can be thought of
as a path connecting the initial and final states. Let us call the maximum number of ‘excited’
spins (up-spins except s0) encountered along a path its height h. One might think that the
relaxation of spin sd needs to proceed via the state 11. . . 1, giving a path of height d. In fact,
the minimal path height h(d) is much lower and given by

h(d) = n + 1 for 2n−1 < d � 2n where n = 0, 1, . . . . (14)

To get a feeling for the result (14) consider in figure 2 some small domain sizes. The
figure illustrates that to generate an up-spin adjacent to the right boundary spin of the domain
one can proceed via a sequence of stepping-stones, for example for d = 4 one first generates
an isolated up-spin in the middle of the domain then uses this stepping-stone to generate the
subsequent excited spins in a similar manner to the relaxation of a d = 2 domain.

The result (14) is easily demonstrated for d = 2n [13]. To relax the 2nth spin s2n , one
can first flip up s2n−1 and use it as a stepping-stone for relaxing s2n . The corresponding path is
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d = 1 1 1→ 1 0 h(1) = 1

d = 2 1 0 1→ 1 1 1 → 1 1 0→ 1 0 0 h(2) = 2

d = 3 1 0 0 1→ 1 1 0 1→ 1 1 1 1→ · · · → 1 0 0 0 h(3) = 3

d = 4 1 0 0 0 1→ · · · → 1 1 1 0 1 → 1 0 1 0 1→
1 0 1 1 1→ · · · → 1 0 1 0 0→ · · · → 1 0 0 0 0 h(4) = 3

Figure 2. Paths through spin configurations in the elimination of a domain of size d that traverse the
minimum energy barrier. The height of the barrier is h(d) and the highest-energy configuration(s)
along the path has its excess excited spins underlined.

(with s2n−1 and s2n underlined)

1 . . . 0 . . . 1→ 1 . . . 1 . . . 1→ 1 . . . 1 . . . 0→ 1 . . . 0 . . . 0 (15)

and reaches height h(2n) = h(2n−1)+1; the +1 arises because the stepping-stone stays up while
the spin 2n−1 to its right is relaxed. Continuing recursively, one arrives at h(2n) = h(1) + n;
but h(1) = 1 because the only path for the relaxation of s1 is 11 → 10. Thus we obtain
equation (14) for d = 2n; a proof for general integer d is given in [14].

From (14) it is evident that the energy barrier�E for the elimination of a domain of size
d is �E  ln d/ ln 2. Thus the rate at which such domains are eliminated is

$(d) ∼ ε(− ln d/ ln 2) = d−1/T ln 2.

From the discussion of section 1.3 and equation (5) we deduce that the typical domain size
grows and the typical energy (number of up-spins) decreases as

dtyp ∼ tT ln 2 Etyp ∼ t−T ln 2. (16)

Also since deq  ε−1 = e1/T the equilibration time is

teq ∼ exp[1/T 2 ln 2]. (17)

2.3. Hierarchical coarsening

From the scaling of $(d), the coarsening dynamics in the limit ε → 0 naturally divides into
stages distinguished by n = h(d) − 1 = 0, 1, . . . . During stage n, the domains with lengths
2n−1 < d � 2n disappear; we call these the ‘active’ domains. This process takes place on
a timescale of O($−1(d)) = O(ε−n); because the timescales for different stages differ by
factors of 1/ε, we can treat them separately in the limit ε → 0. Thus during stage n active
domains are eliminated and the distribution of inactive domains (d > 2n) changes because
elimination of an active domain implies coalescence with a neighbouring domain and results
in the creation of a new inactive domain.

As discussed above for the irreversible system there are no correlations between
neighbouring domains. Therefore we can work directly with the probability of domain sizes
P(d, t), i.e. the independent interval approximation sketched in section 1.3 is actually exact.

To examine stagen of the dynamics, where we assume that all domains with d � 2n−1 have
been eliminated, we shall rescale the time variable to τ = tεn. For the purpose of illustrating
this procedure we write an approximate master equation for stage n

∂

∂t
P (d, t) = −$(d)P (d, t) +

∞∑
d ′=2n−1+1

$(d ′)P (d ′, t)P (d − d ′, t). (18)
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The first term in the right-hand side of (18) represents domains of size d being eliminated;
the second term represents the domains of size d being created through a domain of size d ′

coalescing with a domain of size d − d ′. The equation is approximate because the elimination
of a domain is a complex process that cannot be represented by a single rate; however, the
exact result will be obtained when time is rescaled (see [14] for a presentation that avoids
the inexactitude of (18)). We introduce rescaled time by defining τ = tεn; during stage n
of the dynamics and in the limit ε→ 0, it can take on any positive value τ > 0. Defining
$̃(d) = $(d)/εn and taking the limit ε → 0 the master equation reduces to

for 2n � d > 2n−1 ∂

∂τ
P (d, τ ) = −$̃(d)P (d, τ ) (19)

for d > 2n
∂

∂τ
P (d, τ ) =

2n∑
d ′=2n−1+1

$̃(d ′)P (d ′, t)P (d − d ′, t). (20)

To proceed we define the generating function

G(z, τ) =
∞∑

d=2n−1+1

P(d, τ )zd (21)

and its analogue for the active domains,

H(z, τ) =
2n∑

d=2n−1+1

P(d, τ )zd . (22)

Then multiplying (19), (20) by zd and summing appropriately yields

∂

∂τ
H(z, τ ) = −

2n∑
2n−1+1

$̃(d)P (d, τ )zd (23)

∂

∂τ
G(z, τ ) = ∂

∂τ
H(z, τ ) +

∞∑
d=2n+1

2n∑
d ′=2n−1+1

$̃(d ′)P (d ′, τ )P (d − d ′, τ )zd

=
(
∂

∂τ
H(d, τ )

)
[1−G(z, τ)] (24)

(where the last equality follows by reordering the sums over d and d ′). Equation (24) may be
integrated and one obtains

1−G(z, τ)
1−G(z, 0) = exp(−[H(z, τ)−H(z, 0)]). (25)

Now at the end of stage n, all domains that were active during that stage have disappeared,
and so H(z,∞) = 0. Thus

G(z,∞)− 1 = [G(z, 0)− 1] exp[H(z, 0)]. (26)

Recall that we are considering stage n of the dynamics. The initial condition for stage
n + 1 of the dynamics will be given by the distribution P(d, t) at the end of stage n. Thus
defining Gn ≡ G(z, 0) for stage n, with a similar definition for the active generating function
Hn, we can relate the different stages of the dynamics through

Gn+1(z)− 1 = [Gn(z)− 1] exp[Hn(z)]. (27)

This exact result relates, through their generating functions, Pn(d) and Pn+1(d), which are
defined as the domain length distributions at the end of stages n − 1 and n of the dynamics
respectively. Iterating it from a given initial distributionP0(d) givesPn(d) for all n = 1, 2, . . . .
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1

Figure 3. Domain length distributions Pn(d) at the end of stage n − 1 of the low-T coarsening
dynamics, for initial temperature T = ∞. Open symbols and curves: theoretical results, calculated
from (27), for n = 0 (circles; initial condition), 1 (squares), 2 (diamonds), 3 (triangles). Full
symbols: simulation results for a chain of length L = 215 and ε = 10−4 (n = 1, 2) and ε = 10−3

(n = 3). Inset: scaled predictions 2n−1Pn(d = 2n−1x) versus x for n = 1, . . . , 8. Bold curve:
predicted scaling function (33) (figure taken from [14]).

Figure 3 shows numerical results for the case where P0(d) is the equilibrium distribution (13)
corresponding to an initial temperature of T = ∞. It is clear that a scaling limit emerges for
large n. By this it is meant that rescaled distributions

P̃n(x) = 2n−1Pn(d) where x = d

2n−1
(28)

converge to a limiting distribution P̃ (x) for the scaled domain size x. This is just a statement
of the invariance of the coarsening processes in each stage once the domain sizes are rescaled
by the characteristic size domain size 2n−1.

The change to a continuous variable x for the domain lengths simply results in generating
functionsG(z, τ),H(z, τ ) being replaced by Laplace transforms. Invariance under (27) then
gives the equation

g(2s)− 1 = [g(s)− 1] exp[h(s)] (29)

where

g(s, τ ) =
∫ ∞

1
dx P̃ (x) e−sx h(s, τ ) =

∫ 2

1
dx P̃ (x) e−sx . (30)

We found a solution to this equation by noting that the numerics strongly suggest
P̃ (x) = 1/x for 1 < x < 2. Using this as an ansatz implies

h(x) = Ei(s)− Ei(2s) where Ei(s) =
∫ ∞
s

e−u

u
du

which when inserted into (29) yields

[1− g(s)] exp(Ei(s)) = constant. (31)

The requirement that g(s)→ 0 for large s fixes the constant as unity, which yields

g(s) = 1− exp(−Ei(s)). (32)
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Expanding the exponential as a series allows the Laplace transform to be inverted term by term
and one obtains

P̃ (x) = 1

2π i

∫ γ+i∞

γ−i∞
esxg(s)

= 1

2π i

∫ γ+i∞

γ−i∞
esx

∞∑
m=1

(−1)m+1 Eim

m!

=
∞∑
m=1

(−1)m+1

m!

∫ ∞
1

m∏
r=1

dxr
xr
δ

( m∑
s=1

xs − x
)

= -(x − 1)
1

x
−-(x − 2)

ln(x − 1)

x
+ · · · (33)

where-(x) is the Heaviside step function. This series (33) has singularities in the kth derivative
at the integer values x = k + 1, k + 2, . . . .

It is interesting to note that P̃ (x) given by (33) is identical to the scaling function obtained
for a simple ‘paste-all’ model of coarsening wherein the smallest domain on a one-dimensional
lattice is eliminated by pasting it onto one of its neighbours [26].

The calculated P̃ (x) agrees well with the results obtained by direct iteration of (27)
(figure 3). The average domain length in the scaling limit is given by d̄n = 2n−1x̄; from the
results for P̃ (x) we find x̄ = exp(γ ) = 1.78 . . . , where γ is Euler’s constant.

2.4. Stretched exponential relaxation

The result (17) for the EITS equilibration time teq = exp(1/T 2 ln 2) is based on the
extrapolation of the finite-d̄ coarsening behaviour, d̄ ∼ tT ln 2, into the equilibrium region
d̄ = deq = O(1/ε), where it is no longer strictly valid. We now show, however, that the same
timescale is obtained from the initial decay of the spin–spin autocorrelation function defined
by

R(t) = 〈si(0)si(t)〉eq

〈si(0)〉eq
(34)

at equilibrium at low temperature T .
In equation (34) R(t) is the probability that an up-spin at t = 0 is also up at a later time t .

As t increases, R(t) decays from 1 to the equilibrium concentration of up-spins, c = ε/(1 +ε).
To find the initial decay of R(t), consider the early stages of the dynamics (i.e. t = O(ε−ν)
with ν finite). For ν → n+, all domains of length d � 2n will have disappeared because
t 
 $−1(d). Therefore only up-spins that bounded longer domains at t = 0 will have an
O(1) probability of still being up. From the equilibrium distribution (13), one sees that they
constitute a fraction (1+ε)−2n of the up-spins at t = 0, henceR(ν = n+0)  1−2nε +O(ε2).
Neglecting corrections of O(ε2), the quantity − lnR(ν) thus lies between 2ν−1ε and 2νε (for
ν > 0).

Reverting to unscaled time t , we have

1/2 � −[lnR(t)]/(t/teq)
T ln 2 � 1 (35)

for short times (t/teq)
T ln 2 � 1, which implies

R  exp−[a(t/teq)
T ln 2] (36)

i.e. stretched exponential relaxation with a stretching exponent that depends linearly on T .
However this argument only holds strictly for (t/teq)

T ln 2 � 1. For longer times the stretched
exponential behaviour no longer holds and one requires a more sophisticated analysis [32].
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Note that the timescale teq that enters here is the same as the equilibration time teq =
exp(1/T 2 ln 2) found above. Thus to leading order we can identify the equilibration time for
coarsening after a quench with the equilibrium relaxation time; both have an EITS-divergence
at low T . However the corrections to the EITS-divergence for the two timescales (e.g. factors
of the form exp(a/T )) need not be equal.

2.5. Other related models

Recently it has been shown that the coarsening theory described above for ACIC is also
relevant to a three-spin interaction Ising model on a triangular lattice [33]. There a dual
model entails the elimination of defects (corresponding to up-spins in the ACIC), subject to
dynamical constraints. An EITS relaxation time is obtained and the independent interval
approximation described here (exact for ACIC) can be used as a good approximation to the
coarsening dynamics (see [54]).

One can also interpolate between the asymmetric constrained model and the symmetric
constrained model [6] by introducing a parameter b into the dynamics [34]. The spin-flip rates
are

1 1
1−b
−→←−
(1−b)ε

1 0

1 1
b

−→←−
bε

0 1.

(37)

The ACIC is recovered when b = 0 and the symmetric model is recovered when b = 1/2.
In the symmetric model an isolated up-spin can effectively diffuse by creating a neighbouring
up-spin then flipping down the original up-spin. The domain coalescence happens through
this diffusion process. Thus the energy barrier for elimination of domains does not depend
on domain size. This implies an Arrhenius relaxation law and ‘strong’ glass behaviour. The
crossover to the ‘fragile’ glass behaviour seen for the ACIC (i.e. EITS relaxation time) as one
varies the parameter b has been studied (see [55]).

Finally let us mention a constrained Ising spin chain where the field is induced
dynamically [35]. The allowed spin flips have rates defined as follows:

0 1 1
1/2
−→←−
1/2

0 0 1

1 1 0
1/2
−→←−
1/2

1 0 0

0 1 0
1−→0 0 0.

(38)

Thus a down-spin inside an up-spin domain cannot flip up but an up-spin inside a down-spin
domain can flip down. The domains of up-spins grow as normal as t1/2 but the down-spin
domains grow slightly more quickly as t1/2 ln t . Eventually this results in a slow decay of the
magnetization (number of up-spins as) c ∼ 1/ ln t .

3. The ABC model

3.1. Coarsening in one-dimensional systems

First let us review why indefinite coarsening does not occur in equilibrium systems in one
dimension. Perhaps the best known argument is that of Landau and Lifshitz [36]. (Other



Anomalous coarsening and glassy dynamics 1409

arguments are summarized in [30].) For simplicity, consider a one-dimensional lattice of L
sites with two possible states, say A and B, for each site variable. Let us assume the ordered
phases, where all sites take state A or all sites take state B, have the lowest energy, and assume a
domain wall (a bond on the lattice which divides a region of A phase from that of B) costs a finite
amount of energy ε. Then n domain walls will cost energy nε but the entropic contribution to
the free energy due to the number of ways of placing n walls on L sites isnT [ln(n/L)− 1]
for 1 � n � L. Thus for any finite temperature a balance between energy and entropy
ensures that the number of domain walls grows until it scales as L, that is, until the typical
ordered domain size is finite.

Note that this argument relies on a finite energy cost for domain walls, and short-range
interactions so that one may ignore the interaction energy of domain walls. If the domain
walls can feel each other through some long-range mechanism then coarsening can ensue [37].
Also, of course, we require nonzero temperature so that entropy comes into play. In contrast,
at zero temperature the one-dimensional kinetic Ising model discussed in the introduction does
coarsen.

In the following we shall discuss a one-dimensional model where although the dynamics
are local the system coarsens. In a special case one can understand this through the existence
of an effective long-range energy function.

3.2. Model definition

Here we define a model, to be referred to as the ABC model, that exhibits phase separation
in one dimension. Consider a one-dimensional periodic lattice of length N where each site
is occupied by one of the three types of particle, A, B or C. The model evolves under a
random sequential update procedure which is defined as follows: at each time step a pair of
neighbouring sites is chosen randomly and the particles at these sites are exchanged according
to the following rates:

A B
q
−→←−

1

B A

B C
q

−→←−
1

C B

C A
q

−→←−
1

A C.

(39)

The particles thus diffuse asymmetrically around the ring. The dynamics conserve the number
of particles NA, NB and NC of the three species.

The q = 1 case is special. Here the diffusion is symmetric and every local exchange
of particles takes place with the same rate as the reverse move. The system trivially obeys
detailed balance reaching a steady state in which all microscopic configurations (compatible
with the number of particles NA, NB and NC) are equally probable. This state is disordered
and homogeneous; no phase separation takes place.

Now consider the case q < 1 (the case q > 1 can easily be understood by symmetry). As
a result of the bias in the exchange rates an A particle moves preferentially to the left inside
a B domain and to the right inside a C domain. Similarly the motion of B and C particles in
foreign domains is biased. Consider the dynamics starting from a random initial configuration,
figure 4(a). The configuration is composed of a random sequence of domains of A, B and C
particles. Due to the bias a local configuration in which an A domain is placed to the right of
a B domain is unstable and the two domains exchange places on a relatively short timescale
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a) C A B A C B C A A B B C B C A

⇓
b) A A A B B C C A A B B B C C C

⇓
c) C C A A A A A B B B B B C C C

Figure 4. Schematic representation of the evolution of the system starting from a random initial
condition (a). Initially all unstable domain walls (B A, C B or A C) are removed and one arrives
at a metastable state (b). A slow coarsening process ensues in which the smallest domains are
eliminated until one arrives at a fully phase-separated state (c), compare with figure 1.

which is linear in the domain size. Similarly, AC and CB domains are unstable too. On the
other hand AB, BC and CA configurations are stable and long lived. Thus after a relatively
short time the system reaches a state of the type illustrated in figure 4(b), in which A, B and
C domains are located to the right of C, A and B domains, respectively. The evolution of this
state takes place via a slow diffusion process in which, for example, A particles have to diffuse
against a drift over an adjacent B domain. The timescale for an A particle to cross is ∝ q−l ,
where l is the size of the B domain. We use the discussion of section 1.3 and equation (5)
to deduce that the system coarsens with an average domain size that increases with time as
ln t/| ln q|. Eventually the system phase separates into three domains of the three species of
the form A . . . AB . . . BC . . . C.

In a finite system the phase-separated state may further evolve and become disordered due
to fluctuations. However, the timescale for this to happen grows exponentially with the system
size. For example it would take a time of order of q−min{NB,NC} for the A domain in the totally
phase-separated state to break up into smaller domains. Hence in the thermodynamic limit, this
timescale diverges and the phase-separated state remains stable provided the density of each
species is nonzero. Note that there are always small fluctuations about a totally phase-separated
state. However, these fluctuations affect the densities only near the domain boundaries. They
result in a finite width for the domain walls (the density profile is not a step function but is
smeared out like a Fermi function). The fact that any phase-separated state is stable for a time
exponentially long in the system size amounts to a breaking of the translational symmetry,
i.e. there are N equivalent ground states but the system has to spontaneously choose one of
them.

Since the exchange rates are asymmetric, the system generically supports a particle current
in the steady state, which implies that detailed balance does not hold. To see this, consider the
A domain in the phase-separated state. An A particle near the . . . AB . . . boundary can traverse
the entire B domain to the right with an effective rate proportional to qNB . Once it crosses
the B domain it will move through the C domain with speed 1 − q. Similarly an A particle
near the . . . CA . . . boundary can traverse the entire C domain to the left with an effective rate
proportional to qNC . Once the domain is crossed it moves through the B domain with speed
1 − q. Hence the net A particle current is of the order of qNB − qNC . Since this current is
exponentially small in system size, it vanishes in the thermodynamic limit. For the case of
NA = NB = NC, this argument suggests that the current is strictly zero for any N .

The arguments presented above suggesting phase separation for q < 1 may be easily
extended to q > 1. In this case, however, the phase-separated state is BAC rather than ABC.
This may be seen by noting that the dynamical rules are invariant under the transformation
q → 1/q together with A↔ B.
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3.3. Special case NA = NB = NC

The general argument presented in the previous subsection suggests that for the special case
NA = NB = NC, in the steady state (i.e. after the coarsening process), there are no currents
for any system size. We demonstrate this explicitly by showing that the local dynamics of the
model satisfies detailed balance with respect to a long-range asymmetric energy function H.

We define the occupation variables as follows:

Ai =
{

1 if site i is occupied by an A particle

0 otherwise.
(40)

The variables Bi andCi are defined similarly. Clearly the relationAi +Bi +Ci = 1 is satisfied.
It turns out that for the case NA = NB = NC = N/3 the steady-state distribution WN({Xi})
corresponding to the dynamics (39) may be written in terms of an energy function H:

WN({Xi}) = Z−1
N q

H({Xi }) (41)

H({Xi}) =
N−1∑
i=1

N∑
j=i+1

[CiBj + AiCj + BiAj ]− (N/3)2. (42)

Here ZN is the partition sum given by
∑
qH({Xi }), where the sum is over all configurations in

which NA = NB = NC. Note that although the system is periodic and site 1 is not in any way
special (42) appears to single out site 1. Thus it is not clear that (42) is translationally invariant
under relabelling of the spins.

In order to turn equation (41) into a usual Boltzmann form one could define q as a
temperature variable with

kT = −1/ ln q. (43)

Thus, q → 1 is the infinite-temperature limit, corresponding to the disordered state where
each configuration is equally likely. The proof of equations (41), (42) is straightforward.
This is done by considering a nearest-neighbour particle exchange and verifying that detailed
balance is satisfied with respect to (39). Then we just have to check that the energy function is
translationally invariant. We defer the proof to section 3.7, where we consider a more general
m-species model.

Before proceeding further to evaluate the partition sum associated with the energy
function (42) let us make a few observations. The ground state of the energy function is
given by the fully separated state A . . .AB . . .BC . . .C and its translationally related states.
It easy to check that the ground state with the A domain beginning at site 1 has zero energy
since the contribution to the sum in (42) (coming from the Ai Cj term) is equal to (N/3)2. A
simple way of evaluating the energy of an arbitrary configuration is obtained by noting that
nearest-neighbour exchanges AB→ BA,BC→ CB and CA→ AC cost one unit of energy
each while the reverse exchanges result in an energy gain of one unit. The energy of an arbitrary
configuration may thus be evaluated by starting with the ground state and performing nearest-
neighbour exchanges until the configuration is reached, keeping track of the energy changes
at each step of the way. The highest energy is N2/9 and it corresponds to the totally phase-
separated configuration A . . .AC . . .CB . . .B and itsN translations. Note that the majority of
configurations have energy proportional toN2. In section 3.4 it will be shown that this implies
that only the ground states and low-energy excitations about them contribute to the equilibrium
state.
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A . . . AB . . . BC . . . CABCABC . . . ABC

Figure 5. Metastable state that has the lowest energy for a given number s of domains of each
species. The 3(s − 1) rightmost domains are of size 1 and the three leftmost domains are of size
(N/3− s + 1) each.

To write H in a manifestly translationally invariant form we define Hi0({Xi}) as the energy
function in which site i0 is the origin. Namely,

Hi0({Xi}) =
N+i0−2∑
i=i0

N+i0−1∑
j=i+1

[CiBj + AiCj + BiAj ]− (N/3)2 (44)

where the summation over i and j is modulo N . Summing (44) over all i0 and dividing by N ,
one obtains

H({Xi}) =
N∑
i=1

N−1∑
k=1

(
1− k

N

)
(CiBi+k + AiCi+k + BiAi+k)− (N/3)2 (45)

where in the summation the value of the site index (i + k) is modulo N . In the energy
function (45) the interaction is linear in the distance between the particles, and thus is long
ranged. The distance is measured in a preferred direction from site i to site i + k. Thus the
interaction is asymmetric.

3.4. Ground states and metastable states

A minimum of the energy (42) is realized by a configuration with no unstable domain walls
(B A, C B or A C) so that any exchange of nearest-neighbour particles results in an increase in
the energy. As well as the N ground states there are many metastable states. Any metastable
state is composed of a sequence of domains separated by AB,BC and CA domain walls i.e.
A, B and C domains follow C, A and B domains, respectively (see figure 4(b)). Therefore
each metastable state has an equal number of domains of each type. We shall refer to any
metastable state with s domains of each type, with s = 1, . . . , N/3, as an s-state; the total
number of domains in an s-state is 3s. The s = 1 case corresponds to the ground state while
s = N/3 corresponds to the ABCABC . . .ABC state, composed of a total of N domains each
of length 1. Note that in general the domains of an s-state need not be of equal length.

In the coarsening process it is these metastable states that control the dynamics. We
discuss here some properties of the states such as their number and energy.

To obtain a bound for N (s), the number of metastable states with s domains of each
species, note that the number of ways of dividing N/3 A particles into s domains is

(
N/3−1
s−1

)
.

The number of ways of combining s divisions of each of the three types of particle is clearly[(
N/3−1
s−1

)]3
. There are at most N ways of placing this string of domains on a lattice to obtain

a metastable state (the number of ways need not be equal to N since the string may possess
some translational symmetry). One therefore has[(

N/3− 1

s − 1

)]3

� N (s) � N
[(
N/3− 1

s − 1

)]3

. (46)

Thus, the total number of metastable states is exponential in N .
We now consider the energy of the metastable states. It is easy to convince oneself that

among all s-states, none has energy lower than the configuration illustrated in figure 5.
The energy of this state, Es , satisfies the following recursion relation:

Es+1 = Es +N/3− s (47)
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AA · · · A A B A B A B B · · · B B C C · · · C C

Figure 6. Excitation about a ground state at the A B domain wall of energy E = 3: one A particle
has penetrated two exchanges into the B domain and a second A particle one exchange. This
corresponds to the partition 3 = 2 + 1. The domain wall regions are underlined.

withE1 = 0. To see this from figure 5, note that the s + 1-state may be created from the s-state
by first moving a B particle from the leftmost B domain across (N/3 − s) C particles to the
right, costing (N/3− s) units of energy. Then move an A particle from the leftmost A domain
to the right across the adjacent B and C domains; no net energy change results. Thus the total
energy cost of the moves is (N/3 − s), yielding (47). The recursion relation (47), together
with E1 = 0, is readily solved to give

Es = (s − 1)
N

3
− s(s − 1)

2
. (48)

The energy of all metastable s-states is larger than or equal to Es as given by equation (48).
Note that Es increases with s. Furthermore, for finite s the energy is linear in N whereas for
s ∝ N the energy becomes quadratic in N .

Now let us consider the contribution of the metastable states to the partition sum.
Multiplying the upper bound on the number of s-states (46) with the lower bound on the
energy (48) one obtains an upper bound on the contribution to the partition sum that vanishes
in the thermodynamic limit

N

[(
N/3− 1

s − 1

)]3

q(s−1)N/3−s(s−1)/2 → 0 for s > 1, q < 1 and N →∞. (49)

However, the contribution from the ground states s = 1 is N . Thus even though metastable
states dominate the dynamics, they do not contribute to the partition sum since in (49) the
energy grows more strongly than the entropic contribution.

3.5. Partition sum

We now analyse in more detail the behaviour of the partition sum. In principle one wants to
compute

ZN =
∑

qH({Xi }) (50)

where the sum is over all configurations in which NA = NB = NC. First note that any
configuration that contains unstable domain walls (i.e. is not a metastable state) can be
associated with a metastable state by a path of decreasing energy comprising nearest-neighbour
exchange eliminating of the unstable walls. Conversely the sum over all configurations may be
implemented by summing over all ground states and metastable states and the excitations about
those states. It is not hard to believe that as the metastable states make vanishing contributions
to ZN so do excitations about them. This is proven rigorously in [23]. In the following we
just consider the excitations about the ground states. Consider figure 6, where a low-energy
excitation about a ground state is illustrated. The excitation is localized near the A B domain
wall and comprises one or more A particles penetrating into the B domain (equivalently B
particles penetrating into the A domain). The energy cost is given by the sum of the distances
each A particle has penetrated into the B domain. Thus the total number of excitations of
energy m at the boundary is the number of ways of dividing m into an ordered set of integers
corresponding to the distance the first A has moved, the distance the second A has moved and
so on. This is equal to P(m), the number of partitions of the integer m.
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Several results concerning partitions are known [38]. First the generating function of
P(m) is given by

∞∑
m=0

qmP (m) = 1

(q)∞
(51)

where (q)∞ = lim
n→∞(1− q)(1− q

2) · · · (1− qn). (52)

Although a simple explicit formula for P(m) does not exist the asymptotic behaviour is given
by

P(m)  1

4m
√

3
exp (π(2/3)1/2 m1/2). (53)

Note that the increase is a stretched exponential in m, i.e. slower than exponential.
In the thermodynamic limit one can use (51) directly to calculate the sum of excitations

around a domain wall, i.e. the sum over m of qm, the weight of an excitation of energy m,
multiplied by P(m), the number of such excitations. For a finite system there should be some
upper limit onm—for example, an A particle moved across the B domain will eventually reach
the C domain—but this upper limit can be safely taken to infinity for large N [23]. By the
same token the three domain walls have no significant interaction. Then one has that in the
large-N limit and for all q < 1, the partition sum is given by

ZN = N/[(q)∞]3. (54)

Here the factorN is a result of the sum of contributions from theN ground states and the cubic
power comes from the product of excitations at the three domain walls.

Note that the partition sum is linear and not exponential inN , meaning that the free energy
is not extensive. This reflects the fact that excitations are localized near the domain walls. In
turn this stems from the fact that the energies of most configurations are O(N2), which is a
result of the long-range interaction in the energy function.

A consequence of this is that in the steady state the system is fully phase separated; that
is, each of the domains is pure. This was demonstrated in [23] by showing that

〈AiAi+r〉 = 1
3 −O(r/N) (55)

for any given r and sufficiently large N . Thus the probability of finding a particle a large
distance inside a domain of particles of another type is vanishingly small in the thermodynamic
limit.

For q close to 1, (q)∞ as defined in (52), has an essential singularity

(q)∞ = exp

{
− 1

ln q

[
π2/6 + O(1− q)]} . (56)

This suggests that extensivity of the free energy could be restored in the double limit q → 1
andN →∞withN ln q finite. Physically one can understand this scaling variable as the ratio
of the domain length (N/3) to the domain wall width (∼ ∫

lql dl/
∫
ql dl = 1/| ln q|). The

validity of N ln q as a scaling variable was investigated in [23], where a good scaling collapse
was obtained for the two-point correlation functions.

3.6. Coarsening

The analytic results of the previous subsection forNA = NB = NC give proof of the coarsening
into three pure domains in that special case. Clearly one expects the same behaviour in the
general case but to demonstrate it numerically requires prohibitively long timescales. In order
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to study anomalously slow coarsening dynamics numerically one can employ an effective or
toy model that may be more easily simulated. In this section I shall outline how this can be
implemented.

We consider a system at time t such that the average domain size, 〈l〉, is much larger than
the domain wall width. At these timescales, the domain walls can be taken as sharp and we
may consider only events which modify the size of domains. This means that the dynamics
of the system can be approximated by considering only the movement of particles between
neighbouring domains of the same species. Thus only metastable states are considered in the
toy model.

We represent a configuration by a sequence of integers of the form a1b1c1a2b2c2 . . . a3b3c3,
where, for example, the ith domain of A particles is of length ai . At each time step a pair of
neighbouring domains of the same species of particle, say ai and ai+1, is chosen randomly.
The exchange of particles between domains takes place at a rate dictated by the size of the
domains bi and ci which separate them. Thus the lengths of the chosen domains are modified
by carrying out one of the following processes:

(1) ai → ai − 1
ai+1 → ai+1 + 1

}
with rate qbi

(2) ai → ai + 1
ai+1 → ai+1 − 1

}
with rate qci .

(57)

If ai becomes zero, one deletes the domain ai from the list of domains, and merges bi and ci
with bi−1 and ci−1, respectively.

To simulate the toy model efficiently, an algorithm suitable for rare event dynamics must
be used due to the small rate of events [39]. In [23] an algorithm was employed that entails
repeating the following steps.

(i) List all possible events {n} and assign to them rates {rn} according to the rules of the
model.

(ii) Choose an event m with probability rm/R where R =∑
n rn.

(iii) Advance time by t → t + τ , where τ = 1/R .

The algorithm would be equivalent to a usual Monte Carlo simulation, where one time step
is equivalent to one Monte Carlo sweep, if in step 3, τ were to be drawn from a Poisson
distribution R exp[−Rτ ]. However, a saving in computer time can be had by making the
approximation τ = 1/R.

In [23] the dynamics were simulated for lattice sizes up to 9000. For simplicity we
consider the case NA = NB = NC. An example of typical behaviour of the average domain
size is shown in figure 7. One can see that after an initial transient growth time the data fit
very well with a ln t behaviour. (Note that the system size is large enough that the growth is
N independent.) Simulations for different q values indicate that

〈l〉 = a ln t/| ln q| (58)

with a  2.6. The toy model enables one to verify the scaling behaviour (58) and estimate the
constant a. This would be very difficult to do by simulation of the full model (39).

One can further analyse the toy model by using an independent interval approximation as
discussed in section 1.3. This was carried out in [23].

3.7. Generalization toM � 3 species

We now generalize the ABC model to M species where M � 3. We may define the most
generalM species model with nearest-neighbour particle exchanges that conserve the number
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Figure 7. Monte Carlo simulation results for the toy model for the average domain size, 〈l〉, versus
time, t , for N = 9000 and q = 0.8. The data is averaged over 1760 runs. There is clear evidence
that 〈l〉 grows as ln t (figure taken from [23]).

of each species as follows. Let Xi = 1, 2, . . . ,M denote which type of particle is present
at site i: Xi = m means that site i is occupied by a particle of type m. Nearest-neighbour
exchanges occur with the following rates:

mn

q(m,n)

−→←−
q(n,m)

nm (59)

and we take q(m,m) = 1. The model conserves Nm, the number of particles of type m, for
all m.

According to the choice of the rates (59) the model may or may not phase separate. It
is not difficult to choose rates so that phase separation does indeed occur. For example for
M = 4 the choice

A B
q
−→←−

1

B A D A
q
−→←−

1

A D

B C
q

−→←−
1

C B A C
q

−→←−
1

C A

C D
q

−→←−
1

D C D B
q

−→←−
1

B D

(60)

leads to phase separation into pure domains ordered ABCD. Generally, forM > 3 the structure
of the metastable states can become quite complicated [23]. For example, domains ordered
ACDABCB are also metastable in the model defined by (60). We now find the conditions
under which the dynamics (59) satisfy detailed balance with respect to a steady-state weight
analogous to (41), (42):

W({Xi}) = const.×
N−1∏
i=1

N∏
j=i+1

q(Xj ,Xi) (61)

where the constant is arbitrary.
Consider a particle exchange between sites k and k + 1, where Xk = m,Xk+1 = n and

k �= N . Expanding the product in (61), it is easy to verify that
W(X1, . . . , m, n, . . . , XN)

W(X1, . . . , n,m, . . . , XN)
= q(n,m)
q(m, n)

. (62)
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Since this holds for anym, n, and is irrespective of the number of particles of each species, the
dynamics (59) satisfy detailed balance with respect to the weight (61) for all nearest-neighbour
exchanges between sites k and k+1 with k �= N . If the weights (61) are translationally invariant
then detailed balance will also hold for exchanges between sites 1 and N .

Thus, to complete the proof of detailed balance it is sufficient to demand that (61) is
translationally invariant. To do this we relabel sites i → i + 1. The weight then becomes

W({Xi}) =
N−1∏
i=1

N∏
j=i+1

q(Xj−1, Xi−1) (63)

where X0 is identical to XN . Rewriting this equation by relabelling the indices we obtain

W({Xi}) =
[ N−1∏

i=1

N∏
j=i+1

q(Xj ,Xi)

] N−1∏
k=1

q(Xk,XN)

q(XN,Xk)
. (64)

Comparing (64) with (61) and noting for example that
N∏
j=1

q(Xj ,XN) =
M∏
l=1

[q(l, XN)]
Nl (65)

one can see that (61) is translationally invariant if
M∏
l=1

[
q(m, l)

q(l,m)

]Nl
= 1 (66)

for every m = 1, . . . ,M . Thus, detailed balance holds if (66) is satisfied.
In particular for the three-species model with particles labelled A B C the condition (66)

becomes [
q(A,B)

q(B,A)

]NB
[
q(A,C)

q(C,A)

]NC

=
[
q(B,A)

q(A,B)

]NA
[
q(B,C)

q(C,B)

]NC

=
[
q(C,A)

q(A,C)

]NA
[
q(C,B)

q(B,C)

]NB

= 1. (67)

The ABC model defined in section 3.2 has q(B,A)
q(A,B) = q(C,B)

q(B,C) = q(A,C)
q(C,A) = q in which case (67)

reduces to NA = NB = NC.
The ABC model has been generalized to two dimensions [40] where the coarsening process

generates striped domains perpendicular to the direction of the drive. The ln t growth of these
domains is retained.

3.8. Other related models

A model closely related to the ABC model is that first introduced by Lahiri and
Ramaswamy [41] in the context of sedimenting colloidal crystals. This model comprises
two interpenetrating sublattices. On each sublattice there reside two species of particles with
no holes. On the first sublattice (at integer sites) the particles are denoted by + and− whereas
on the second sublattice (at half-integer sites) the particles are denoted as ‘tilts’ \ and /, for
reasons that will become apparent below. The dynamics are defined as

+ \ −
r1
−→←−
r2

− \ + + / −
r2
−→←−
r1

− /+

/ − \
p2

−→←−
p1

\ − / / + \
p1

−→←−
p2

\ + /

(68)
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i.e. the particles make nearest-neighbour exchanges on their respective sublattices but the rates
are influenced by what kind of particle is occupying the intermediate site on the other sublattice.
In [41] more general rates than (68) were originally considered but the above dynamics appear
to capture all the generic behaviour [42, 43].

In the regime r1 > r2 and p1 > p2 phase separation is observed into ordered domains of
\−, \+, /+, /−. That is, on each lattice the particles ultimately separate into pure domains
with one ring rotated by π/2 with respect to the other. During the coarsening process domain
lengths grow logarithmically in time. In [42] the separation into pure domains, as first analysed
in the ABC model, was termed ‘strong phase separation’.

In the special case where each lattice is half filled with particles and
r2

r1
= p2

p1
≡ q (69)

(where the parameter q has been introduced to allow comparison with the ABC model), the
steady state weightWN satisfies detailed balance with respect to a long-range energy function
very similar in form to (42):

WN = Z−1
N q

H (70)

where

H = 1
2

N∑
i=1

k∑
j=1

τj−1/2 σi (71)

and τ and σ are each Ising spins variables for one of the sublattices. σ = +1(−1) corresponds
to a + (−) particle and τ = +1(−1) corresponds to tilt / ( \ ).

A very useful intuitive picture of this energy function is to regard
∑k
j=1 τj−1/2 as the height

of an interface (relative to some origin) [42]. Thus the dynamics correspond to the + and −
particles making nearest-neighbour interchanges on a landscape (implied by the tilt variables)
that at the same time is evolving in a way coupled to the +,− particles. The long-range energy
corresponds to the gravitational potential energy of the + particles on this landscape. A +
particle will have its energy minimized at the bottom of a valley of the interface. A ground
state then corresponds to the configuration that allows the + particles to minimize collectively
their energy, namely, the tilt variables form one deep valley with the + particles residing at the
bottom:

−\ − \ − \ − \ + \ + \ + \ + / + / + / + / − / − / − /.
The picture of particles moving on an evolving landscape is very appealing in the context of
glassy dynamics. It is evocative of the glassy regime of a hard-sphere colloid where particles
move in cages formed by the other particles—when a particle escapes from its cage it will
cause the cages of other particles to be restructured.

In the regime r1 > r2 and p1 < p2 the system is in a disordered phase. In the regime
r1 > r2 and p1 = p2 the fluctuations in the landscape are uncoupled to the particle dynamics,
yet the system still exhibits an interesting coarsening dynamics [44].

A further model related to the ABC model has been studied by Arndt et al [45]. It was
originally couched in terms of +,− particles and holes diffusing on a one-dimensional periodic
lattice with hop rates

+−
q

−→←−
1

− +

+ 0
1−→ 0 +

0− 1−→ − 0.

(72)
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In order to make a comparison with the ABC model we identify a + particle with an A, a −
particle with a B and a hole with a C; then the dynamics (72) become

A B
q
−→←−

1

B A

C B
1−→ B C

A C
1−→ C A.

(73)

Thus this model corresponds to the ABC model with some exchanges forbidden and for
q < 1 one has the same strong phase separation. However for q > 1 this model enters a
disordered phase, whereas in the ABC model one has phase separation but with the order of
domains permuted to ACB. Originally it was thought that there was also a ‘mixed’ phase in
the model [45]. It now appears that this is a very strong finite-size effect for q � 1 [46]. An
appealing feature of this model is that the steady state can, in principle, be computed exactly
by a matrix product approach for all numbers of particles [45].

It should also be noted that a model with cyclic symmetry and nonconserving dynamics
that exhibits coarsening has been studied [47].

4. Conclusions

In this paper I have reviewed a variety of simple models that exhibit anomalous coarsening in
the sense that the dynamics slow down with time and the coarsening becomes anomalously
slow—slower than the usual power law growth of domain size with time. In the models
discussed the slowdown in the coarsening is due to dynamical constraints rather than any
quenched disorder. The dynamical constraints imply that energy barriers must be surmounted
in order for the system to coarsen further. Thus the system is delayed in metastable states for
increasingly long times during the coarsening process and in this sense the evolution of the
system is glassy.

In sections 2 and 3 I focused on two models: the ACIC and the ABC model. In the ACIC
model the energy barriers encountered during coarsening are logarithmic in the domain size
whereas for the ABC model the barriers are linear. This leads to the domain growth � ∼ tT ln 2

(as T → 0) for the ACIC and � ∼ ln t for the ABC model. Despite similarities there are
distinctions between the two models. For the ACIC the energy function is trivial—free spins
in a field—and the dynamics obey detailed balance. But it is the existence of forbidden spin-
flips that generates the energy barriers in the relaxation paths. On the other hand in the ABC
model the dynamics are prescribed without regard to an energy function and no exchanges (that
conserve the particle numbers) are forbidden. However in a special case one can identify an
effective long-range energy function and the anomalous coarsening can be explained in terms
of linear energy barriers in the coarsening process. Lastly, the ABC model will ultimately
coarsen into pure domains whose size is related to the system size whereas the ACIC only
coarsens up to a length 1/ε that is independent of system size. For both models there exist
other related models that exhibit similar behaviour, thus reinforcing their interest.

The question remains as to how faithfully the anomalous coarsening scenario describes a
true (experimental) glassy system. Although the models are by no means meant to represent
any particular system, one recovers the correct phenomenology—for example in the ACIC
we derived stretched exponential decay of an auto-correlation function and EITS law for
equilibration. Nevertheless it is widely thought that a coarsening system is distinct from a
glassy system.
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There are several reasons for this. Firstly, in a glassy system such as a hard-sphere colloid,
the ordered phase (crystalline state) is thought to be irrelevant since its nucleation barrier is
too large. Thus there are no coarsening domains of an ordered crystalline phase. On the
other hand at present we do not have any known spatial order parameter for a glassy phase so
it is unclear how domains of the glassy phase would coarsen. Secondly, coarsening implies
a definite direction in the dynamics, towards the fully coarsened state. In contrast to this,
phenomenological trap models of glassy dynamics [19] rely on a random exploration of the
traps that exist in the phase space. That is, when a system manages to escape from one trap
it falls randomly into another trap. In this way, as the timescale increases, the system will
locate deeper traps and stay in them for longer. Finally, dynamically constrained models by
nature rely on specific dynamics rather than the nature of an energy function (if it exists).
This contrasts with the ‘inherent structures’ approach to glassy dynamics, where the energy
landscape is the key feature [48,49]. This point is examined in the present volume by Crisanti
and Ritort.

Indeed a criterion has been proposed to distinguish between coarsening dynamics and
glassy dynamics [50] in a microscopic model. One runs a simulation for a certain time then
makes two copies of the simulation. These copies start from identical initial conditions (where
the initial simulation was halted) but use different realizations of the noise in their dynamics,
i.e. different sets of random numbers in a Monte Carlo simulation. Then, if the states of the
two simulations remain strongly correlated (have a finite overlap) as time goes by one has a
coarsening system. This is termed type I behaviour. On the other hand, if the states of the two
simulations become less and less correlated then the system is a glassy system; this is termed
type II behaviour. The idea behind this relies on the belief that for a coarsening system there
is always a preferred direction in the phase space along which all simulations will be swept,
whereas in a glassy system the traps in the phase space are essentially explored randomly by
each simulation.

At present it is not clear how general this categorization is. For example it is not yet clear
how systems that coarsen but have many ground states, such as the ABC model or the model
of [42], are accounted for.

Let us also mention a 3d ferromagnetic Ising model with plaquette interactions [51]. In
this model one has the usual doubly degenerate ferromagnetic ground states. In addition,
flipping any plane of spins does not increase the energy. Thus in total there is an exponential
number of degenerate ground states. In a quench to low temperature, type II glassy behaviour
is exhibited [52], yet it is thought that coarsening occurs whereby a characteristic length grows
anomalously slowly, possibly as ln t . For a related model of competing ferromagnetic and next-
nearest-neighbour antiferromagnetic interactions that has just the two ferromagnetic ground
states, logarithmic coarsening is observed and explained in terms of energy barriers [21].
The glassy coarsening dynamics of the plaquette model is not so well understood [53]. It
would certainly be of interest to broaden our understanding by studying further examples of
anomalous coarsening.
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[4] Richert R and Bässler H 1990 J. Phys.: Condens. Matter 2 2273
[5] Palmer R G, Stein D L, Abrahams E and Anderson P W 1984 Phys. Rev. Lett. 53 958
[6] Fredrickson G H and Anderson H C 1984 Phys. Rev. Lett. 53 1244
[7] Schulz M and Trimper S 1999 J. Stat. Phys. 94 173
[8] Pitts S J, Young T and Andersen H C 2000 J. Chem. Phys. 113 8671
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